A recent trend in deep learning research features the application of graph neural networks for mesh-based continuum mechanics simulations. Most of these frameworks operate on graphs in which each edge connects two nodes. Inspired by the data connectivity in the finite element method, we connect the nodes by elements rather than edges, effectively forming a hypergraph. We implement a message-passing network on such a node-element hypergraph and explore the capability of the network for the modeling of fluid flow. The network is tested on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. The results show that such a message-passing network defined on the node-element hypergraph is able to generate more stable and accurate temporal roll-out predictions compared to the baseline generalized message-passing network defined on a normal graph. Along with adjustments in activation function and training loss, we expect this work to set a new strong baseline for future explorations of mesh-based fluid simulations with graph neural networks.
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
近年来,基于神经网络的深度恢复方法已实现了最先进的方法,从而导致了各种图像过度的任务。但是,基于深度学习的Deblurring网络的一个主要缺点是,训练需要大量模糊清洁图像对才能实现良好的性能。此外,当测试过程中的模糊图像和模糊内核与训练过程中使用的图像和模糊内核时,深层网络通常无法表现良好。这主要是因为网络参数在培训数据上过度拟合。在这项工作中,我们提出了一种解决这些问题的方法。我们将非盲图像脱毛问题视为一个脱氧问题。为此,我们在一对模糊图像上使用相应的模糊内核进行Wiener过滤。这导致一对具有彩色噪声的图像。因此,造成造成的问题被转化为一个降解问题。然后,我们在不使用明确的清洁目标图像的情况下解决了降解问题。进行了广泛的实验,以表明我们的方法取得了与最先进的非盲人脱毛作品相提并论的结果。
translated by 谷歌翻译
大气湍流可以通过在大气折射索引中引起空间和时间随机的波动,从而显着降低远程成像系统获得的图像质量。折射率的变化导致捕获的图像几何扭曲和模糊。因此,重要的是要补偿由大气湍流引起的图像中的视觉降解。在本文中,我们提出了一种基于深度学习的方法,用于限制大气湍流降解的单个图像。我们利用基于蒙特卡洛辍学的认知不确定性来捕获网络很难恢复的图像中的区域。然后,使用估计的不确定性图来指导网络以获得还原图像。对合成图像和真实图像进行了广泛的实验,以显示拟议工作的重要性。代码可在以下网址找到:https://github.com/rajeevyasarla/at-net
translated by 谷歌翻译
对于无人机和电池操作的自动驾驶系统,具有最低计算和能源成本的准确深度估计是至关重要的。机器人应用需要在快速变化的3D周围环境下进行导航和决策的实时深度估算。高精度算法可能会提供最佳的深度估计,但可能会消耗巨大的计算和能源资源。一般的权衡是选择较少准确的方法来进行初始深度估计,并在需要时选择更准确但更加密集的方法。先前的工作表明,可以通过开发最先进的方法(AnyNet)来改善立体声深度估计来改善这种权衡。我们研究了单眼和立体视觉深度估计方法,并研究了降低这些方法计算复杂性的方法。这是我们的基线。因此,我们的实验表明,单眼深度估计模型的大小降低了〜75%,将精度降低了不到2%(SSIM度量)。我们对新型立体声视觉方法(AnyNET)进行的实验表明,尽管模型大小降低了约20%,但深度估计的准确性不会降低3%以上(三个像素误差度量)。我们已经表明,较小的模型确实可以竞争性能。
translated by 谷歌翻译
许多未来的技术依靠神经网络,但是验证其行为的正确性仍然是一个主要挑战。众所周知,在存在少量输入扰动的情况下,神经网络可能会脆弱,从而产生不可预测的输出。因此,神经网络的验证对于它们的采用至关重要,近年来已经提出了许多方法。在本文中,我们重点介绍基于半神经网络验证的基于半决赛的技术(SDP)技术,这特别有吸引力,因为它们可以在确保多项式时间决策的同时编码表达行为。我们的起点是Fazlyab等人提出的DEEPSDP框架,该框架使用二次约束将验证问题抽象为大规模的SDP。但是,当神经网络的大小增长时,解决此SDP的求解很快就变得棘手了。我们的主要观察结果是,通过利用弦宽度和DeepSDP的特定参数化,我们可以将DeepSDP的主要计算瓶颈(一种大的线性基质不等式(LMI))分解为等效的较小LMI的集合。我们的参数化允许可调参数,从而使我们能够在验证过程中权衡效率和准确性。我们称我们的配方和弦 - 深色,并提供实验评估,以表明它可以:(1)有效提高可调参数的精度,(2)(2)在更深层网络上的表现优于deepSDP。
translated by 谷歌翻译
近年来,在设备上的演讲识别(ASR)的个性化已经爆炸性增长,这在很大程度上是由于个人助理功能在移动设备和智能家居扬声器上越来越受欢迎。在这项工作中,我们提出了个人VAD 2.0,这是一种个性化的语音活动探测器,可检测目标扬声器的语音活动,作为流媒体上的ASR系统的一部分。尽管以前的概念证明研究已经验证了个人VAD的有效性,但在生产中可以使用该模型之前,仍然存在一些关键的挑战:首先,在招生和无人列的场景中,质量必须令人满意。其次,它应该以流媒体方式运行。最后,型号的大小应足够小,以适合有限的延迟和CPU/内存预算。为了满足多方面的要求,我们提出了一系列新颖的设计:1)高级扬声器嵌入调制方法; 2)一种新的培训范式,以概括为无数的条件; 3)用于延迟和资源限制的体系结构和运行时优化。对现实语音识别系统的广泛实验证明了我们提出的方法的最新性能。
translated by 谷歌翻译
学习推迟(L2D)框架有可能使AI系统更安全。对于给定的输入,如果人类比模型更有可能采取正确的行动,则系统可以将决定推迟给人类。我们研究L2D系统的校准,研究它们输出的概率是否合理。我们发现Mozannar&Sontag(2020)多类框架没有针对专家正确性进行校准。此外,由于其参数化是为此目的而退化的,因此甚至不能保证产生有效的概率。我们提出了一个基于单VS-ALL分类器的L2D系统,该系统能够产生专家正确性的校准概率。此外,我们的损失功能也是多类L2D的一致替代,例如Mozannar&Sontag(2020)。我们的实验验证了我们的系统校准不仅是我们的系统校准,而且这种好处无需准确。我们的模型的准确性始终可与Mozannar&Sontag(2020)模型的模型相当(通常是优越),从仇恨言语检测到星系分类到诊断皮肤病变的任务。
translated by 谷歌翻译
在本文中,我们为非稳定于3D流体结构交互系统提供了一种基于深度学习的阶数(DL-ROM)。所提出的DL-ROM具有非线性状态空间模型的格式,并采用具有长短期存储器(LSTM)的经常性神经网络。我们考虑一种以状态空间格式的可弹性安装的球体的规范流体结构系统,其具有不可压缩的流体流动。我们开发了一种非线性数据驱动的耦合,用于预测横向方向自由振动球的非定常力和涡旋诱导的振动(VIV)锁定。我们设计输入输出关系作为用于流体结构系统的低维逼近的力和位移数据集的时间序列。基于VIV锁定过程的先验知识,输入功能包含一系列频率和幅度,其能够实现高效的DL-ROM,而无需用于低维建模的大量训练数据集。一旦训练,网络就提供了输入 - 输出动态的非线性映射,其可以通过反馈过程预测较长地平线的耦合流体结构动态。通过将LSTM网络与Eigensystem实现算法(时代)集成,我们构造了用于减少阶稳定性分析的数据驱动状态空间模型。我们通过特征值选择过程调查VIV的潜在机制和稳定性特征。为了了解频率锁定机制,我们研究了针对降低振荡频率和质量比的范围的特征值轨迹。与全阶模拟一致,通过组合的LSTM-ERA程序精确捕获频率锁定分支。所提出的DL-ROM与涉及流体结构相互作用的物理学数字双胞胎的基于物理的数字双胞胎。
translated by 谷歌翻译
目的:要开发和验证计算机工具,用于在计算机断层扫描(CT)扫描上描绘的上述组织的自动和同时分割的计算机工具:内脏脂肪(VAT),皮下脂肪(SAT),骨骼脂肪(IMAT),骨骼肌(SM)和骨头。方法:使用了从癌症成像档案(TCIA)获得的100 CT扫描的队列 - 50个全身正电子发射断层扫描(PET)-CTS,25胸和25腹部。手动注释五种不同的身体组合物(VAT,SAT,IMAT,SM和骨骼)。培训次训练策略用于效率。使用已经注释的案例训练了UNET模型。然后,该模型用于为剩余情况启用半自动注释。使用10倍的交叉验证方法来开发和验证几种卷积神经网络(CNNS)的性能,包括UNET,复发性残留的UNET(R2UNET)和UNET ++。在培训CNN模型时使用3-D贴片采样操作。测试了单独培训的CNN模型,看看它们是否可以达到更好的性能而不是共同分割它们。配对样品T检验用于测试统计显着性。结果:在三种CNN模型中,UNET在共同分割五个身体组合物中表现出最佳的整体性能,骰子系数为0.840 +/- 0.091,0.908 +/- 0.067,0.603 +/- 0.084,0.889 +/- 0.027,和0.884 +/- 0.031,Jaccard指数为0.734 +/- 0.119,0.837 +/- 0.096,0.437 +/- 0.082,0.800 +/- 0.042,0.793 +/- 0.049,分别用于增值税,SAT,IMAT, SM和骨头。结论:分段体组合物中的CNN模型中没有显着差异,但共同分段体组合物比分别分割更好的性能。
translated by 谷歌翻译